statgraphics®

Forecasting Economic Time Series Using Statgraphics Centurion

Presented by Dr. Neil W. Polhemus

Time Series

- "A sequence of numerical data points in successive order, using occurring in uniform intervals." – <u>www.investopida.com</u>
- Examples
 - Daily closing stock prices
 - Monthly unemployment rates
 - Quarterly GDP
- Notation: $\{Y_t\}, t = 1, 2, ..., n$

Example – U.S. Quarterly GDP

Time Series Components

- Trend
- Cycle
- Seasonality
- Random or irregular component

Trend Analysis

Differencing Operators

First Differences

$$\nabla Y_t = Y_t - Y_{t-1}$$

Second Differences

 $\nabla^2 Y_t = (Y_t - Y_{t-1}) - (Y_{t-1} - Y_{t-2})$

First Differences: $\nabla Y_t = Y_t - Y_{t-1}$

First Differences after Square Root

Types of Forecasting Models

- Autoprojective models models that involve only the time series to be forecast. These models capture the dynamics of past time series movements and project them into the future.
- Models with leading indicators models that include past values of other time series variables.

GDP and New Construction Permits

Notation

• Time series to be forecast:

 $\{Y_t\}, t = 1, 2, 3, ..., n$

Forecasts:

 $F_t(k)$ = forecast of Y_{t+k} using information available at time *t*

• One-ahead forecast errors:

$$\hat{\varepsilon}_t = Y_t - F_{t-1}(1)$$

1. Random walk - current value has all relevant information.

without constant: $F_t(k) = Y_t$ for all $k \ge 1$

with constant: $F_t(k) = Y_t + k\hat{\Delta}$ where $\hat{\Delta}$ is mean difference between consecutive periods

Trend models – time series follows a deterministic trend with random fluctuations around the trend.

$$F_t(k) = \hat{a} + \hat{b}(t+k)$$

$$F_t(k) = \exp\left(\hat{a} + \hat{b}(t+k)\right)$$

$$F_t(k) = \exp(\hat{a} + \hat{b}/(t+k))$$

3. Moving averages – averages recent history to forecast future behavior.

 Exponential smoothing – combines new information with previous forecasts to generate new forecasts.

$$F_t(k) = \alpha Y_t + (1 - \alpha) F_{t-1}(1)$$

Statgraphics has simple, linear, quadratic and seasonal smoothers.

Holt's Linear Exp. Smoothing

5. ARIMA Models – parametric models which describe system dynamics.

ARIMA(*p*,*d*,*q*) model has:

autoregressive term of order *p* moving average term of order *q* applied to the differences of order *d*

Autoregressive Models

• AR(1)

$$Y_t = \mu + \phi_1(Y_{t-1} - \mu) + \varepsilon_t$$

• AR(2)

$Y_t = \mu + \phi_1(Y_{t-1} - \mu) + \phi_2(Y_{t-2} - \mu) + \varepsilon_t$

Moving Average Models • MA(1) $Y_t = \mu + \varepsilon_t - \theta_1 \varepsilon_{t-1}$ • MA(2) $Y_t = \mu + \varepsilon_t - \theta_1 \varepsilon_{t-1} - \theta_2 \varepsilon_{t-2}$ statgraphics[®]

centurion

ARMA Models

• ARMA(1,1)

```
Y_t = \mu + \phi_1 \left( Y_{t-1} - \mu \right) + \varepsilon_t - \theta_1 \varepsilon_{t-1}
```


ARIMA Models

• ARIMA(1,1,1)

 $\nabla Y_t = Y_t - Y_{t-1}$

 $\nabla Y_t = \mu + \phi_1 \left(\nabla Y_{t-1} - \mu \right) + \varepsilon_t - \theta_1 \varepsilon_{t-1}$

Note: μ is sometimes omitted.

Automatic Forecasting

	Automatic Forecasting
Building starts GDP Housing starts Permits	Data:
Quarter	Image: Indices: J Quarter or Sampling Interval Once Every: 1 Once Every: 1 Organ Starting At: Output Minute(s) Omoth(s) Starting At: Omoth(s) Starting At:
	(Seasonality:) (Trading Days Adjustment:) (Select:)
Sort column names	Number of Forecasts: Withhold for Validation: 3 0 Cancel Delete Transform
	statgraphics [®]

statoraphics com

centurion

Analysis Options

Au	tomatic Forecasting Opt	tions
Au Models to Include Random Walk Random Walk with Drift Mean Linear Trend Quadratic Trend Exponential Trend S-Curve	tomatic Forecasting Opt ✓ Optimize Parameters ✓ Optimize Parameters ✓ Optimize Parameters ✓ Optimize Parameters ✓ Optimize Parameters ✓ Optimize Parameters ✓ Optimize Parameters	Image: Constant of the second seco
 Quadratic Trend Exponential Trend S-Curve Moving Average Simple Exp. Smoothing Brown's Linear Exp. Smoothing Hall's Linear Exp. Smoothing 	 Optimize Parameters 	 Akaike Information Criterion (AIC) Hannan-Quinn Criterion (HQC) Schwarz Bayesian Inf. Criterion (SBIC) Mean Squared Error (MSE) Mean Absolute Error (MAE) Mean Absolute Error (MAE)
Quadratic Exp. Smoothing Winters' Exp. Smoothing ARIMA: Optimize Model Order AR Terms (p) Nonseasonal: Seasonal: Exp. Smoothing Nonseasonal: Seasonal: Exp. Smoothing Seasonal: D	Optimize Parameters Optimize Parameters Optimize Parameters Optimize Parameters Differencing (d) Nonseasonal: 2 Seasonal: 0 Include constant	Adjustments Parameters Estimation Input series

Method Selection Criterion

Akaike Information Criterion

$$AIC = 2\ln(RMSE) + \frac{2c}{n}$$

c = number of coefficients in fitted model

RMSE = root mean squared error calculated from the one-period ahead forecast errors

Adjustments

	Adju	stment Options	
•	Math C None C Natural log C Base 10 log G Square root C Reciprocal C Power	Seasonal None Multiplicative Additive Inflation Apply at: Beginning of Period	
	O Box-Cox Power: 1.0 Addend: 0.0 OK	C Middle of Period Rate: 0.0 %	
	۵		**************************************
	statgrap	tgraphics®	

statgraphics.com

Adjustments

- Trading days adjustment used to normalize monthly data by dividing each data value by number of trading days in the month.
- 2. Math adjustment transforms each data value before fitting models.
- **3. Seasonal adjustment** removes seasonal effects using seasonal decomposition prior to fitting models.
- **4. Inflation adjustment** corrects each data value for a constant rate of inflation.

Analysis Summary

Automatic Forecasting - GDP

Data variable: GDP (billions of chained 2009 dollars, seasonally adjusted)

Number of observations = 221 Time indices: Quarter (from BEA)

Forecast Summary

Math adjustment: Square root Forecast model selected: ARIMA(2,1,0) with constant Number of forecasts generated: 3 Number of periods withheld for validation: 0

	Estimation	Validation
Statistic	Period	Period
RMSE	64.215	
MAE	46.0611	
MAPE	0.572054	
ME	-0.00425189	
MPE	-0.00142829	

ARIMA Model Summary

Parameter	Estimate	Stnd. Error	t	P-value
AR(1)	0.28558	0.0672908	4.24396	0.000033
AR(2)	0.145362	0.0672999	2.15991	0.031876
Mean	0.32359	0.0391041	8.27509	0.000000
Constant	0.184141			

Backforecasting: yes

Estimated white noise variance = 0.111779 with 217 degrees of freedom Estimated white noise standard deviation = 0.334334 Number of iterations: 1

Model Comparisons

Model Comparison Data variable: GDP Number of observations = 221

Models

(A) Random walk (B) Random walk with drift = 0.32566 (C) Constant mean = 91.6055 (D) Linear trend = 53.9272 + 0.339444 t (E) Quadratic trend = 55.3126 + 0.302169 t + 0.000167904 t² (F) Exponential trend = exp(4.06538 + 0.00380989 t) (G) S-curve trend = exp(4.52201 + -1.24712 /t) (H) Simple moving average of 2 terms (I) Simple exponential smoothing with alpha = 0.9999 (J) Brown's linear exp. smoothing with alpha = 0.6898 (K) Holt's linear exp. smoothing with alpha = 0.9999 and beta = 0.0046 (L) Brown's quadratic exp. smoothing with alpha = 0.4852 (M) ARIMA(2,1,0) with constant (N) ARIMA(1,1,1) with constant (O) ARIMA(1,1,0) with constant (P) ARIMA(0,1,2) with constant

(Q) ARIMA(2,1,1) with constant

Model Statistics

Estimatio	n Period							
Model	RMSE	MAE	MAPE	ME	MPE	AIC	HQC	SBIC
(A)	91.8364	76.2823	0.93793	59.7314	0.743744	9.04002	9.04002	9.04002
(B)	68.7816	48.0714	0.601831	0.0671557	-0.00743105	8.47092	8.47713	8.4863
(C)	4076.34	3501.1	48.6727	472.255	-19.5762	16.635	16.6412	16.6503
(D)	367.469	296.302	3.37438	3.30028	-0.0266323	11.8314	11.8438	11.8621
(E)	369.041	281.256	2.93507	2.92671	-0.0809698	11.849	11.8676	11.8951
(F)	589.219	391.496	4.05372	-20.4197	-0.127704	12.7757	12.7881	12.8064
(G)	3825.45	3207.88	40.476	846.503	-9.99178	16.517	16.5294	16.5477
(H)	126.82	106.906	1.30998	90.1888	1.11967	9.69458	9.70079	9.70996
(I)	91.8422	75.943	0.933758	59.4671	0.740453	9.04919	9.0554	9.06457
(J)	68.679	50.2451	0.624134	-0.290729	0.0072373	8.46794	8.47415	8.48331
(K)	71.1219	51.7957	0.651243	17.2005	0.246029	8.54689	8.55931	8.57764
(L)	76.6172	56.2215	0.702866	-1.16001	-0.0153938	8.68669	8.6929	8.70207
(M)	64.215	46.0611	0.572054	-0.00425189	-0.00142829	8.35162	8.37025	8.39775
(N)	64.2656	46.193	0.574924	0.125512	0.000328955	8.3532	8.37182	8.39933
(0)	64.6991	46.524	0.577422	-0.0032121	-0.00330691	8.3576	8.37001	8.38835
(P)	64.587	46.1862	0.572778	0.0258493	-0.00296255	8.36318	8.3818	8.40931
(Q)	64.3437	46.0917	0.571796	0.0936972	-0.000419893	8.36468	8.38951	8.42618

Model Residual Analysis

Model	RMSE	RUNS	RUNM	AUTO	MEAN	VAR
(A)	91.8364	OK	**	***	OK	OK
(B)	68.7816	OK	**	***	OK	OK
(C)	4076.34	***	***	***	***	OK
(D)	367.469	***	***	***	OK	OK
(E)	369.041	***	***	***	*	***
(F)	589.219	***	***	***	OK	***
(G)	3825.45	***	***	***	***	**
(H)	126.82	***	***	***	OK	OK
(I)	91.8422	OK	**	***	OK	OK
(J)	68.679	OK	OK	*	OK	OK
(K)	71.1219	OK	***	***	OK	OK
(L)	76.6172	OK	OK	***	OK	OK
(M)	64.215	OK	OK	OK	OK	OK
(N)	64.2656	OK	OK	OK	OK	OK
(0)	64.6991	*	OK	OK	OK	OK
(P)	64.587	*	OK	OK	OK	OK
(Q)	64.3437	OK	OK	OK	OK	OK

Key:

RMSE = Root Mean Squared Error

RUNS = Test for excessive runs up and down

RUNM = Test for excessive runs above and below median

AUTO = Box-Pierce test for excessive autocorrelation

- MEAN = Test for difference in mean 1st half to 2nd half
- VAR = Test for difference in variance 1st half to 2nd half
- OK = not significant (p >= 0.05)

* = marginally significant (0.01 < p <= 0.05)

** = significant (0.001 < p <= 0.01)

*** = highly significant (p <= 0.001)

Time Sequence Plot

Forecast Plot

Forecast Table

		Lower 95.0%	Upper 95.0%
Period	Forecast	Limit	Limit
Q2/15	16315.3	16147.4	16484.1
Q3/15	16372.6	16099.1	16648.4
Q4/15	16443.6	16070.2	16821.4

Residual ACF

Residual Crosscorrelations

Models with Leading Indicators

- The ARIMA model is modified by adding additional terms involving one or more regressors {X_t}.
- The same differencing and AR operators are applied to ${X_t}$ as are applied to ${Y_t}$.
- We are essentially fitting an ARIMA model to the errors of the regression of Y on X.
- Helpful discussion of this by Prof. Robert Nau at people.duke.edu/~rnau/arimreg.htm

One Complication

To use a time series such as *Permits* in our forecast model:

- Generate a forecasting model for the regressor variable(s).
- Add the forecasts to the bottom of the datasheet.
- Add the regressors to our model using Analysis Options.

Forecasting Construction Permits

	Automatic Forecasting	×		
Building starts GDP Housing starts Permits Quarter	Data: Permits (Time Indices:) Quarter or Sampling Interval Once Every: 1 Once Every: 0 Once Every: 1 Once Every: 0 Once Every: 0 On			
Sort column names	(Select:)			
Number of Forecasts: Withhold for Validation:				
OK Ca	ncel Delete Transform Help			

Adding Forecasts to Data Table

		C:\Data\webina	r\GDPdata.sgd			Σ	3
	Quarter	GDP	Building starts	Housing starts	Permits		
	from BEA	billions of chained 2009 dollars, seasonally adjusted	from OECD, seasonally adjusted	thousands of units, from FRED	thousands of permits, from FRED		
214	Q2/13	15606.6	72055.6	866	994		
215	Q3/13	15779.9	73500.0	883	983		
216	Q4/13	15916.2	85416.7	1012	1029		
217	Q1/14	15831.7	77083.3	934	1031		
218	Q2/14	16010.4	82111.1	984	1041		
219	Q3/14	16205.6	85805.6	1029	1045		
220	Q4/14	16294.7	88555.6	1055	1092		
221	Q1/15	16264.1	80722.2	975	1065		
222	Q2/15				1088.90		
223	Q3/15				1117.32		
224	Q4/15				1148.04		
225							
226							
227							-
	GDPdata B C	7	•			►	

Add Regressor Variables

	Input Variable(s)	×
Building starts GDP Housing starts Permits Quarter	Variable(s): LAG(Permits,1) LAG(Permits,2) LAG(Permits,3)	
🔽 Sort column names		
OK Ca	ncel Delete Transform	Help
	statgraphics®	

Revised Model

Automatic Forecasting - GDP

Data variable: GDP (billions of chained 2009 dollars, seasonally adjusted)

Number of observations = 221 Time indices: Quarter (from BEA)

Forecast Summary

Math adjustment: Square root Forecast model selected: ARIMA(1,1,0) with constant + 3 regressors Number of forecasts generated: 3 Number of periods withheld for validation: 0

	Estimation	Validation
Statistic	Period	Period
RMSE	59.9928	
MAE	42.9407	
MAPE	0.520399	
ME	0.147357	
MPE	-0.00510692	

ARIMA Model Summary

Stnd. Error	t	P-value
0.0688097	1.834	0.068056
0.000202409	4.76213	0.000004
0.000200952	3.55193	0.000471
0.00020176	2.45658	0.014830
0.0238401	13.8819	0.000000
	Stnd. Error 0.0688097 0.000202409 0.000200952 0.00020176 0.0238401	Stnd. Error t 0.0688097 1.834 0.000202409 4.76213 0.000200952 3.55193 0.00020176 2.45658 0.0238401 13.8819

Backforecasting: yes

Estimated white noise variance = 0.0936222 with 212 degrees of freedom Estimated white noise standard deviation = 0.305977

Number of iterations: 7

Revised Forecasts

Note

- At 8:30AM this morning (June 24) the BEA announced a "third" estimate of the Q1/2015 GDP. It raised the estimate from 16,264.1 to 16,287.7.
- That's a revision from -0.7% to -0.2% in the annual rate compared to the previous quarter.
- That changes our Q2/2015 forecast from 16,334.8 to 16,361.5. That's an increase from about 2.0% to 2.2% growth year-over-year.

Data Sources

- New Private Housing Units Authorized by Building Permits – Federal Reserve Bank of St. Louis
- GDP Bureau of Economic Analysis, U.S.
 Department of Commerce

References

- George Box and Gwilym Jenkins (2008) <u>Time</u> <u>Series Analysis: Forecasting and Control</u> (fourth edition).
- Burton Malkiel (2015) <u>A Random Walk Down</u> <u>Wall Street: The Time-Tested Strategy for</u> <u>Successful Investing (eleventh edition)</u>

Recorded Webinar

You may find the recorded webinar, PowerPoint slides and sample data at:

www.statgraphics.com

Look for "Instructional Videos".

